Summary Files

Summary files have the filename 'summary.txt'. They are text (ASCII) files containing one line for each time step. Each line is divided into 23 columns, containing the following data:

Column Number	Datum	Description
1	j	Step number
2	t	Age (years)
3	Μ	Mass (M_{\odot})
4		Luminosity (L _o)
5	Log ₁₀ R	Radius (R_{\odot})
6	$Log_{10} T_s$	Surface temperature (K) How close to degeneracy are we? (White Dwarfs
7	$Log_{10} T_c$	Central temperature (K) and Neutron Stars are made of degenerage electrons and neutrons, respectively)
8	$\log_{10}\rho_{\rm c}$	Central density (kg m ⁻³)
9	$\log_{10} P_{\rm c}$	Central pressure (N m ⁻²)
10	ψ_{c}	Central electron degeneracy parameter
11	X_{c}	Central hydrogen mass fraction tdyn ~ (sound speed)/(length scale)
12	Y_{c}	Central helium mass fraction
13	$X_{C,c}$	Central carbon mass fraction How long it would take star to radiate away all its
14	$X_{N,c}$	Central nitrogen mass fraction gravitational energy if nothing opposed its collapse
15	$X_{O,c}$	Central oxygen mass fraction
16	$ au_{dyn}$	Dynamical timescale (years)
17	$ au_{KH}$	Kelvin-Helmholtz timescale (years) How long until the star burns all of whatever it
18	$ au_{ m nuc}$	Nuclear timescale (years) is currently burning?
19	L_{PP}	Luminosity from PP chain (L_{\odot})
20	L_{CNO}	Luminosity from CNO cycle (L_{\odot})
21	L_{3a}	Luminosity from triple-alpha reactions (L_{\odot})
22	L_{Z}	Luminosity from metal burning (L_{\odot})
23	L_{V}	Luminosity of neutrino losses (L _O) Luminosity from He burning (if star is
24	$M_{\rm He}$	Mass of helium core (M _o) massive enough to eventually burn He)
25	$M_{\rm C}$	Mass of carbon core (${\rm M}_{\odot}$)
26	$M_{\rm O}$	Mass of oxygen core (M_{\odot})
27	R_{He}	Radius of helium core (R_{\odot})
28	$R_{\rm C}$	Radius of carbon core (R _o) Each nuclear process loses neutrinos -
29	$R_{\rm O}$	Radius of oxygen core (R _o) how much energy do they carry away per second?